

Laboratory ceramics

ACEFE, S.A.

SEDE CENTRAL

Calle Isaac Peral, 5 Pol. Ind. Camí Ral 08850 Gavà, España Tel.: +34 936-362-002 acefesa@acefesa.com

DELEGACIONES

Cataluña Norte: Cataluña Sur: Centro y Sur: Levante:

Julio Mesa Cristian Gimó Manuel Mena Charo Ortín Francisco Gutiérrez

Tel.: 670-906-156 Tel.: 617-486-038 Tel.: 617-486-039 Tel.: 670-906-508 Tel.: 627-449-343 comercial3@acefesa.com comercial6@acefesa.com comercial5@acefesa.com comercial2@acefesa.com comercial7@acefesa.com

Contents

- 3 What is Laboratory Porcelain?
- 4 Why should I use Haldenwanger Laboratory Porcelain?
- 6 Haldenwanger quality the proven best!
- 7 Zirconium oxides
- 7 Pointers on the correct use of Laboratory Porcelain

Laboratory Porcelain

- 8 Mortars 55
 - Pestles 56
 - Evaporating basins 109
- 9 Evaporating basins 130, 131, 888
- 10 Incinerating dishes 33, 33 C, 33 D Flour incinerating dishes 5032
- II Melting crucibles 79, 79 C, 79 MF Filtering crucibles 84
- 12 Gooch crucibles 82 A, 82 R Crucible lids 79 D
- 13 Filtering discs 31 B Funnels 126, 127 C
- 14 Spot plates 61 A, 61 B
 Desiccator plates 119 C
- 15 Casseroles 17
- Combustion boats 30
- Graduated beakers 51
- 16 Ball mills GSK Balls 42 K
- 17 Spoon spatulas 74
 - Clay plates
 - Hard porcelain tubes
 - Combustion boats

Oxide Ceramics

- 18 Alsint 99.7-combustion boats
 Alsint 99.7 porous incinerating dishes
- Alsint 99.7-incinerating dishes
- Alsint 99.7-tubular crucibles
- 19 Alsint 99.7-crucibles

All products listed in this catalogue are in accordance with DIN 40680 – subject to inadvertent modifications, errors and omissions. Special sizes and custom designs available on request.

What is Laboratory Porcelain?

Laboratory Porcelain results from thousands of years of systematic development of porcelain itself – an impervious silicate material that is made by firing a mixture of natural minerals such as china clay, quartz and feldspar.

The properties of Haldenwanger Laboratory Porcelain correspond to the DIN EN 60672 standard, group 100, type 110. Temperature stability and resistance to physical and chemical attack are important characteristics. Consistant quality is ensured through strict control of raw materials and production. Laboratory Porcelain is a potassium aluminium silicate. Under the microscope, a transparent cut shows that Haldenwanger Laboratory Porcelain is a material in which scorched and prismatic mullite crystals $(3\text{Al}_20_3 \cdot 2\text{SiO}_2)$ are embedded in a glass matrix. As a silicate, Haldenwanger Laboratory Porcelain is very resistant to all types of acids, even at boiling temperatures, with the exception of hydrofluoric acid.

Although less resistant to warm and highly concentrated alkalis than to acids, it still performs better than glass. Molten alkali salts attack Laboratory Porcelain. Its resistance to high temperatures comes from the mullite structure of the material. Although its glass phase softens at very high temperatures, the mullite structure has a stabilising effect and prevents deformations. Therefore, unglazed Laboratory Porcelain can be used at temperatures of up to 1350°C according to the application. Glazed Laboratory Porcelain can be used at temperatures of up to 1000°C. After that, the glaze begins to soften.

Haldenwanger has been manufacturing Laboratory Porcelain for more than 150 years and development is still ongoing. New market demands in terms of form and quality mean continual custom. Many standard products must comply with a range of different national norms. Laboratory Porcelain is mainly used in industrial laboratories and research institutes worldwide as an aid in chemical analyses and preparation work.

Why should I use Haldenwanger Laboratory Porcelain?

Quality and resistance for more than 150 years

Despite our long history, we have taken care to maintain the original size and shape of our products. New challenges in an ever-growing market have led us to new developments. Ensuring the best refractoriness and resistance to physical and chemical attack has always been of the utmost importance to us.

We guarantee consistently high standards by performing quality checks at all levels, e.g. on raw materials, in the forming process and during final product inspection. To this end, we have established our own state-of-the-art testing and development centre as well as a pilot plant.

Our products are continuously tested to comply with DIN 12851 regulations. This comprehensive and strict DIN standard specifies the requirements and test procedures for laboratory equipment made of hard porcelain (C110).

→ Imperviousness of the ceramic body

No single area of any sample may show:

- any kind of discoloration in glaze-free areas
- penetration of dye between the ceramic body and glazing

→ Dense glazing (no pores, no cracks)

No single sample may show trajectories of excess glazing slurry or any discoloration along the edges.

→ Thermal shock resistance

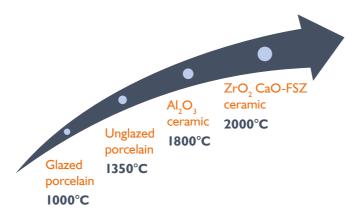
No single sample may fail by fracture and no crazing may appear after quenching.

Refractoriness of the glazing up to 900°C

Glazed pieces may not stick together at 900°C.

→ No weight change during annealing

No single sample may show a weight change exceeding 0.1 mg per 10 g material.


Chemical resistance to hydrochloric acid, soda and caustic soda

No single sample may show a weight loss of more than:

- I mg per dm² of the wetted inner surface area (hydrochloric acid)
- 10 mg per dm² of the wetted inner surface area (diluted soda)
- 60 mg per dm² of the wetted inner surface area (caustic soda)

Technical support

As a producer of high-performance ceramics, Haldenwanger offers not only the best materials but also technical support with materials selection and application. Our laboratory ceramics portfolio includes products that deliver temperature stability up to 2000°C (as for instance ZrO₂ – materials on request).

Material	Material Application temperature	
Glazed porcelain	1000°C	5.3
Unglazed porcelain	1350°C	5.3
Al ₂ O ₃	1800°C	8–9
ZrO ₂ CaO-FSZ	2000°C	10

Please note that all values quoted (page 4–5) are based on test specimens and may vary according to component design. These values cannot be guaranteed and can only be transferred to other forms and dimensions to a limited extent. They should be used for guidance only. In the field, for example, Alsint 99.7 moulded pieces demonstrate mechanical strength values between 160 and 300 MPa, depending on wall thickness, actual shape, surface finish, the shaping process and post-processing.

Being a member of the VGKL (Verband des Groß- und Außenhandels für Krankenpflege- und Laborbedarf), a trade association for leading wholesalers of laboratory equipment, we have always been at the cutting edge of technology.

In addition, Haldenwanger offers training courses in the theory and usage of Laboratory Porcelain.

Aggressive reagents

Laboratory Porcelain	Chemical resistan
All acids (20°C):	excellent*
All acids (boiling):	excellent*
Warm, highly-concentrated alkaline solutions:	good
Molten alkaline salts:	unsuitable

* Exception: hydrofluoric acid

Alsint 99.7-Oxide Ceramics

All acids (20°C):	excellent*
All acids (boiling):	excellent*
Warm, highly-concentrated alkaline solutions:	good
Molten alkaline salts:	unsuitable

* Exception: highly concentrated hydrofluoric acid, boiling phosphoric acid, boiling potassium hydroxide and sodium hydroxide solutions

High temperatures

Glazed Laboratory Porcelain: Unglazed Laboratory Porcelain: Alsint 99.7 Oxide Ceramics:

Heat resistant

up to max. 1000°C up to max. 1350°C up to max. 1800°C

High-wear conditions

For example:

- mortar and pestle
- ball mill
- mouthpieces
- shaft-protection sleeves, etc.

New developments

We are constantly optimising our Laboratory Porcelain to meet your needs.

Highest standards

- Our Laboratory Porcelain complies with DIN EN 60672-3, Group C 100, Type C 110.
- Laboratory articles made of Alsint 99.7 Oxide Ceramics comply with DIN EN 60672, Group C 700, Type C 799.

Stringent product controls, from the raw materials to the finished product, ensure the consistently high quality of our products.

Laboratory Porcelain	Unit	Hard porcelain	Pythagoras
Type according to DIN EN 60672-3	-	C 110	C 610
Range of application	-	Laboratory Porcelain	Chemical-technical products
Water absorption capacity	%	≤ 0.2	≤ 0.2
Bulk density	g/cm³	2.4	2.6
Flexural strength 20°C (3-Punkt)	Vol%	70–90	120
Thermal expansion 20–1000°C	μm	5.3	6
Thermal conductivity 200°C	MPa	1.4	2
Maximum temperature exposure	GPa	1350 unglazed/1000 glazed	I400 unglazed

Oxide Ceramics	Unit	Alsint 99.7 *	Alsint porous
Al ₂ O ₃ content	%	99.7	99.5
Alkali content	%	0.05	0.05
CaO stabiliser content	%	_	-
Type according to DIN VDE 0335	_	C 799	-
Water absorption capacity	%	≤ 0,2	2–3.5
Bulk density	g/cm³	3.75–3.94	3.5–3.6
Flexural strength 20°C (3-Punkt)	MPa	300	70–110
Young's modulus	GPa	300–380	_
Hardness (Mohs' scale)	_	9	_
Thermal expansion 20–1000°C	I/10 ⁶ K	8–9	8–9
Thermal conductivity 20–100°C	W/m K	25	-
Thermal shock resistance	_	good	good
Average pore diameter	μm	-	I-3
Specific thermal capacity 20–100°C	J/kg K	900	-
Maximum temperature exposure **	°C	1800	1700

^{*}We recommend that products be heated at a rate not exceeding 30–50°C per hour, ** dependent on load

Haldenwanger quality – the proven best!

Why is thermal shock resistance of the utmost importance for Laboratory Porcelain?

Thermal shock resistance as described in DIN 51068 is a material's response to repeated subjection to thermal stresses occurring in (rapidly) changing temperature fields. Heating up and cooling down laboratory ceramics may lead to thermal stresses within the ceramic body. Compressive and tensile stresses may

form due to the temperature gradients within the material. In extreme situations, local stresses may exceed the strength level of the material, resulting in cracking. Thus, excellent thermal shock properties are most important for the longevity of Laboratory Porcelain.

Haldenwanger crucibles shown before (left) and after (right) anneal testing. The result confirms the thermal stability of the glazing, even after multiple testing cycles.

Competitor crucibles shown before (left) and after (right) anneal testing. Significant discoloration can be detected after the first anneal cycle.

Custom ceramics

The following pages will provide an overview of our current Laboratory Porcelain product range. In addition, we offer bespoke products in variable material and shape/size combinations.

Also, we can apply your logo, serial numbers and barcodes on the glazing.

Haldenwanger is your number one specialist in high-temperature and laboratory ceramics. Thanks to our more than 150 years of experience, we can offer the ideal solution.

We would be pleased to advise you in many European languages!

Core competencies of Morgan Advanced Materials:

Application Engineering

Materials Science

Customer Focus

Zirconium oxides

Zirconia Crucibles CaO-FSZ

We offer customised zirconia crucibles for several applications. Calcium fully stabilised zirconia possesses high refractory properties in temperatures of up to 2000°C.

Zirconia is extensively used in the chemical processing industry due to its outstanding chemical resistance to alkalis, acids and caustics.

Our crucibles stand for high purity, tight tolerances and stability in thermal processes.

Order-based production for customised dimensions; availability upon request.

Unit	Values
%	94
%	5
g/cm³	> 5.4
I/106 K	10
W/mK	1.5-3.0
MPa	200
°C	2000
	% % g/cm³ I/10° K W/mK MPa

Please note that all values quoted are based on test specimens and may vary according to component design. These values are not guaranteed in any way and should only be treated as indicative values. They should be used for guidance only and for no other purpose.

Pointers on the correct use of Laboratory Porcelain:

The expected lifetime of Laboratory Porcelain is a function of various factors such as heating and cooling rates, the degree of filling (half/completely filled), the homogeneity of the filling within the crucible, the geometry of the crucible (round/ angular, wall thickness, radii, transitions), usage (e.g. during cleaning), etc.

In order to avoid damaging the material, please heed the following guidelines:

Maximum temperature:

1000°C • glazed porcelain · unglazed porcelain 1350°C • Al₂O₂-crucibles 1800°C • ZrO₂ CaO-FSZ-crucibles 2000°C

Maximum heating rate:

150°C/h Porcelain-crucibles Alsint-crucibles 50°C/h • ZrO₂ CaO-FSZ-crucibles 50°C/h

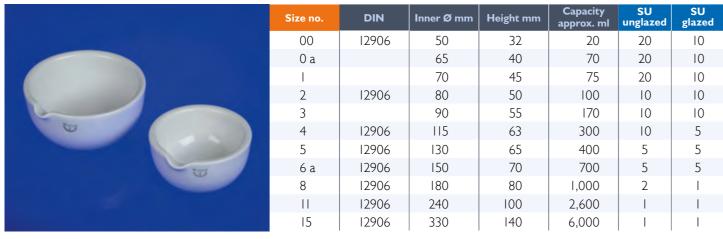
At higher application temperatures (> 400°C), curved crucibles 33 and 33 D should preferably be used over the angular crucible 33 C.

Minimum degree of filling:

- choose the right size according to the content, minimumdegree of filling 75% (to avoid temperature differences)
- homogeneous filling within the crucible

Operation during cool-down phase:

- only use pre-heated crucible tongs
- place hot crucibles on porous ceramic materials only, such as R-SiC or alumo-silicate materials

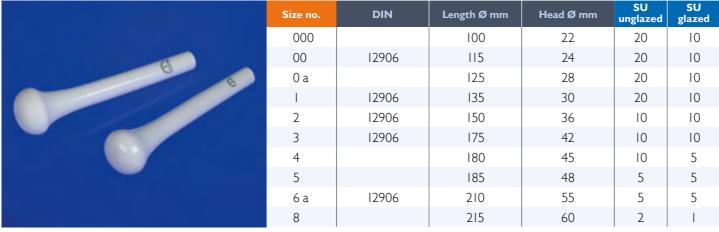


Mortars

Article no. 55

with spout

 T_{max} depends on the application, but should not exceed 200°C



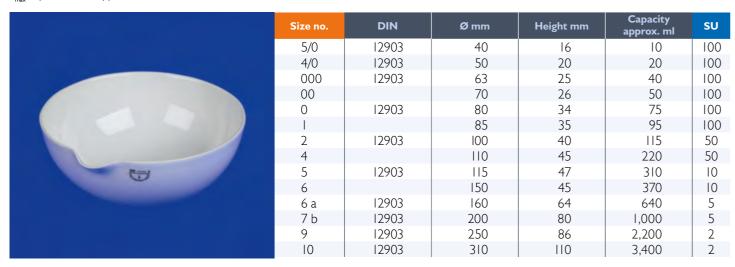
When ordering, please specify whether the grinding surface should be glazed or unglazed.

Pestles

Article no. 56

 T_{max} depends on the application, but should not exceed 200°C

When ordering, please specify whether the grinding surface should be glazed or unglazed.

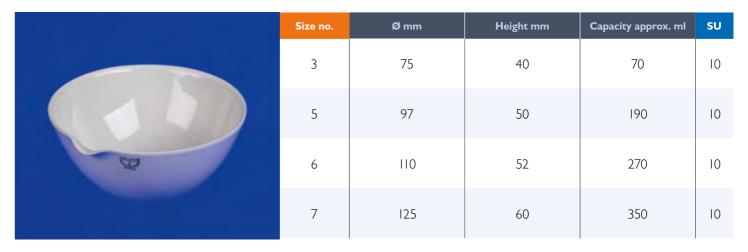

Evaporating basins

Article no. 109

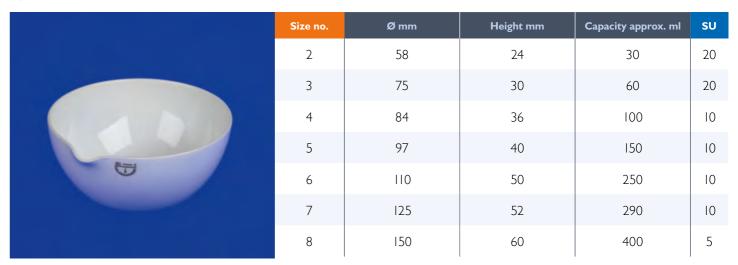
form B, semi-deep, with spout, size 5/0–5 glazed inside and outside

size 6–10 glazed except outside base

T_{max} depends on the application, but should not exceed 400°C



Evaporating basins


Article no. 130

french shape, with spout and round base, glazed inside and outside

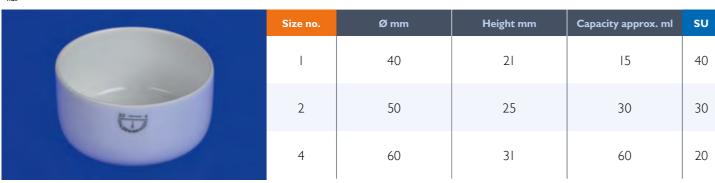
T_{max} depends on the application, but should not exceed 400°C

Article no. 131 french shape, with spout and flat base, glazed inside and outside T_{max} depends on the application, but should not exceed 400°C

Article no. 888 form A, shallow, with spout, glazed except outside base $T_{\rm max}$ depends on the application, but should not exceed 400°C

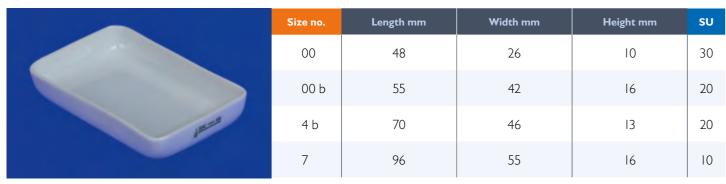
	Size no.	DIN	Ø mm	Height mm	Capacity approx. ml	SU
	000	12903	40	9	5	30
	00	12903	50	П	10	30
	0	12903	63	13	20	30
	2	12903	80	20	40	20
	4	12903	100	22	80	20
THE STATE OF THE S	6	12903	125	27	270	20
	6 a	12903	160	35	450	10
9	8	12903	190	55	1,100	3
	9	12903	240	65	1,750	3
	10	12903	300	60	2,500	2

8 - 1



Incinerating dishes

Article no. 33


cylindrical, glazed except outside base

 T_{max} depends on the application, but should not exceed 1000°C

Article no. 33 C conical, rectangular, glazed except outside base

 T_{max} depends on the application, but should not exceed 400°C

Article no. 33 D shallow, glazed except outside base $T_{\mbox{\tiny max}}$ depends on the application, but should not exceed $1000^{\circ} C$

¥320—3	

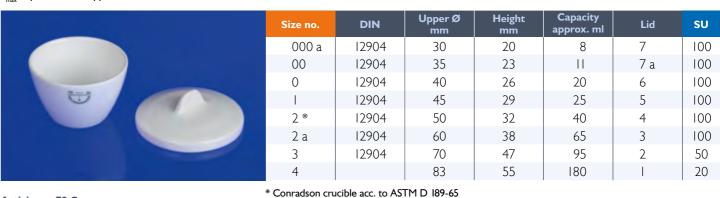
Size no.	Ø mm	Height mm	Capacity approx. ml	su
2	37	10	8	40
3	42	П	10	40
4	48	12	15	30

Flour incinerating dishes

Article no. 5032

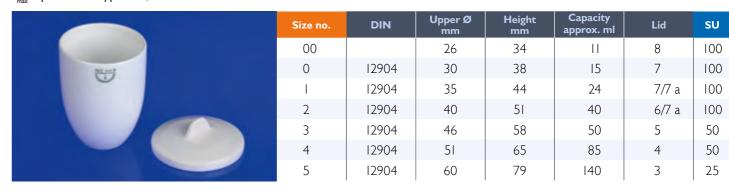
according to Prof. Mohs, glazed except outside base

 T_{max} depends on the application, but should not exceed 1000°C

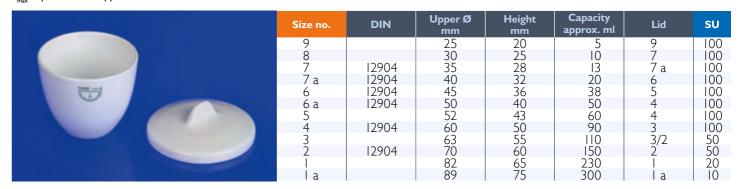

Size no.	Ø mm	Height mm	Capacity approx. ml	SU
I	56	23	30	100

Melting crucibles

Article no. 79


low shape, glazed, minimum filling level 75%

 T_{max} depends on the application, but should not exceed 1000°C



Article no. 79 C tall shape, glazed, minimum filling level 75%

 T_{max} depends on the application, but should not exceed 1000°C

Article no. 79 MF medium-high shape, glazed, minimum filling level 75% $T_{\mbox{\tiny max}}$ depends on the application, but should not exceed $1000^{\circ} C$

Filtering crucibles

Article no. 84 with porous base

 T_{max} depends on the application, but should not exceed 400°C

Size no.	DIN	Rim Ø mm	Base Ø mm	Height mm	Capacity approx. ml	SU
P2/2	12909	35	24	40	25	I

Porosity: P2 $\approx 7 \mu m$

Gooch crucibles

Article no. 82 A

wide shape, with perforated base, glazed

 T_{max} depends on the application, but should not exceed 600°C

Size no.	Upper Ø mm	Base mm	Height mm	Capacity approx. ml	SU
2	39	25	42	25	15
3	42	26	45	35	10

Lid 79 D, filtering discs 3I B have to be ordered separately. Filter holes approx. 0.5 mm in Ø

Article no. 82 R tall shape, with perforated base, glazed T_{max} depends on the application, but should not exceed 600°C

Size no.	Upper Ø mm	pper Ø mm Base mm		Capacity approx. ml	su
3	35	24	41	25	20

Lid 79 D, filtering discs 31 B have to be ordered separately. Filter holes approx. 0.5 mm in Ø

Crucible lids

Article no. 79 D

 T_{max} depends on the application, but should not exceed 600°C

Size no.	DIN	Inner Ø mm	SU
9		28	50
8		33	50
7	12904	37	50
7 a	12904	45	50
6	12904	49	50
5		54	50
4		64	25
3		70	25
2	12904	76	25
I		89	20
Ιa		94	10

Filtering discs

Article no. 31 B according to Dr Witt

 T_{max} depends on the application, but should not exceed 600°C

Funnels

Article no. 126 according to Dr Hirsch

 T_{max} depends on the application, but should not exceed 200°C

Size no.	DIN	Nominal size* Ø mm	Inner Ø mm	Height mm	Tube length mm	Outer Ø mm	Tube top Ø mm	Tube bottom Ø mm	su
5/0	12905	8	9	45	22	30	7	5.5	10
4/0		_	П	56	25	40	9	6	10
4/0 a		_	13	61	27	45	12	7	10
000	12905	16	15	74	33	52	11.5	8	10
00	12905	25	27	102	42	72	16	П	10

Article no. 127 C according to Dr Büchner

T_{max} depends on the application, but should not exceed 200°C

* The nominal size is equivalent to the diameter of suitable filter paper.

	Size no.	DIN	Nominal size* Ø mm	Inner Ø mm	Height mm	Tube length mm	Capacity approx.	Tube top Ø mm	Tube bottom Ø mm	su	
	000		18	19	47	20	3	9	8	10	
	00		27	29	60	30	10	10.5	8.5	10	
	0		40	42	76	37	25	12.5	10	10	
	0 a	12905	45	48	100	41	50	16	14	10	
Barren B	- 1	12905	55	59	129	53	75	19	16.5	10	
45.7.7.7.7	2	12905	70	74	150	75	135	21	15.5	10	
1111111	2 a	12905	90	95	165	75	290	24	20	10	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	12905	110	114	201	90	580	31	23	3	
15265	4	12905	125	130	232	106	795	31.2	25.5	2	
	4 a	12905	150	155	235	110	1,250	35	25	2	
	5	12905	185	190	260	120	1,900	35	25	1	
	6	12905	240	250	330	138	4,300	40	26	1	
	6 a	12905	270	279	300	125	5,800	48	29.6	1	
	8	12905	320	330	350	150	10,600	55	36	1	

Spot plates

Article no. 61 A

rectangular, with 6 wells, glazed $T_{\rm max}$ depends on the application, but should not exceed 400°C

o:					CII			
Size no.	Length mm	Width mm	Height mm	Number	Ø mm	Depth mm	SU	
3	115	80	12	6	36	Ш	10	

Article no. 61 B rectangular, with 12 wells, glazed T_{max} depends on the application, but should not exceed 400°C

c:					Cavities			
Size no.	Length mm	Width mm	Height mm	Number	Ø mm	Depth mm	SU	
2	119	85	6	12	20	3	10	
3	127	97	12	12	25	6	10	

Desiccator plates

Article no. 119 C

with central hole 20 mm in \varnothing and filter holes approx. 5 mm in \varnothing T_{max} depends on the application, but should not exceed 600°C

Size no.	DIN	Height mm	Ø mm	su
90	12911	7.9	90	10
140	12911	8.9	140	10
190	12911	9.4	190	10
235	12911	10.6	235	10
280	12911	10.6	280	I

Casseroles

Article no. 17

with porcelain handle, glazed except rim

 T_{max} depends on the application, but should not exceed 400°C

	Size no.	DIN	Ø mm	Height mm	Capacity approx. ml	SU
	4/0	12907	63	36	80	10
	000	12907	80	46	140	10
	0	12907	102	58	290	10
•	2	12907	127	70	500	4
	4	12907	160	97	1,300	I
	4 b	12907	215	110	2,600	I

Combustion boats

Article no. 30

glazed $\rm T_{\rm max}$ depends on the application, but should not exceed 1000°C

Size no.	Length mm	Width mm	Height mm	SU
6	85	13	8	20
7	102	13	10	20
9	130	18	14	10

Graduated beakers

Article no. 51

graduated inside, glazed except outside base $\rm T_{\rm max}$ depends on the application, but should not exceed 400°C

Size no.	Base Ø mm	Height mm	Capacity approx. ml	SU
3 a	80	100	250	3
5 a	95	125	500	2
8	110	165	1,000	2
10	140	193	2,000	I
14	190	280	5,000	I

Ball mills

Article no. GSK

 $T_{\mbox{\tiny max}}$ depends on the application, but should not exceed 200°C

GSK mill no.	Base Ø mm	Height mm	Capacity approx. ml	SU
0	135	182	1,000	I
0 a	150	222	1,500	I
0 b	200	240	3,000	I
I	225	280	5,000	I
Ιx	288	333	10,000	I
Ιa	335	360	15,000	I

With lid, metal lock and sealing ring, glazed inside and outside. Unglazed inside available upon request.

Sealing rings, inner rubber rings and metal locks as spare parts can also be purchased for each type of ball mill.

Unglazed balls Article no. 42 K

Volume recommendations for ball fillings

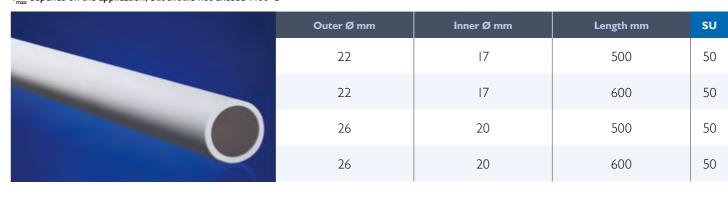
GSK mill no.	Capacity			Ball &	Ø mm			
GSK IIIII IIO.	approx. l	9	15	20	30	40	50	
0	I	0.10 kg	0.2 kg	0.2 kg	-	-	_	
0 a	1.5	0.15 kg	0.3 kg	0.3 kg	-	-	_	
0 b	3	0.30 kg	0.6 kg	0.6 kg	-	-	_	. 5 kg
I	5	0.50 kg	1.0 kg	1.0 kg	-	-	_	Sales unit per 5 kg
Ιx	10	0.50 kg	1.5 kg	1.5 kg	1.5 kg	_	_	Sale
l a	15	1.00 kg	1.5 kg	1.5 kg	1.5 kg	2 kg	2 kg	
Number of balls per kg approx.		1,080	230	95	30	12	6	
Ball density per	litre approx.	1.35	1.4	1.4	l.3	1.3	l.23	

Spoon spatulas

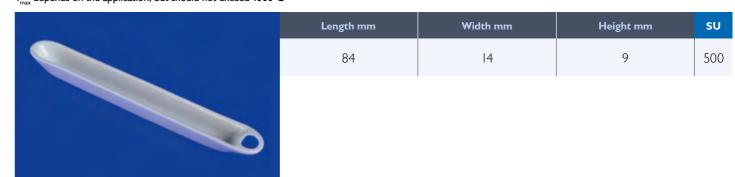
Article no. 74

 T_{max} depends on the application, but should not exceed 400°C

Clay plates porous


T_{max} depends on the application, but should not exceed 600°C

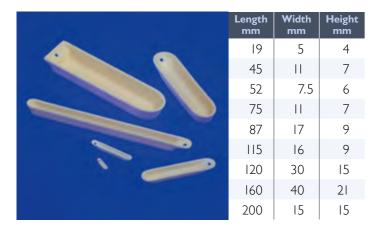
Hard porcelain tubes unglazed


T_{max} depends on the application, but should not exceed I400°C

C and S determination

Combustion boats unglazed

 T_{max} depends on the application, but should not exceed 1000°C





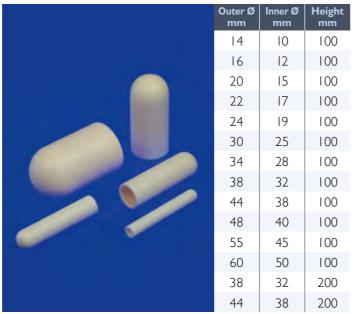
Oxide Ceramics

Alsint 99.7-combustion boats

Alsint 99.7-incinerating dishes

Custom design

We can custom made Alsint 99.7 components to your requirements. Simply send us your detailed specifications and we will provide you with an obligation-free quote. Alsint 99.7 is the material of choice for use under high-wear conditions, in chemical-technical and electrical engineering applications and in high-temperature technology.

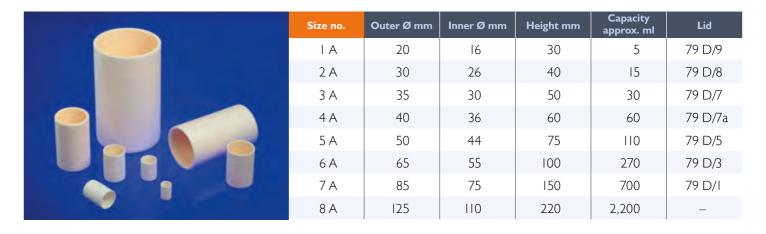

Important information concerning the use of Alsint 99.7 laboratory equipment

Due to their high refractoriness (melting point above 2000°C) and chemical resistance to a wide range of substances, crucibles and other devices made of Alsint 99.7 are used in multiple applications. However, these outstanding properties are only fully maintained with proper handling.

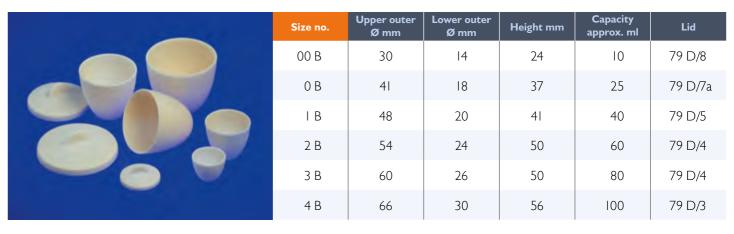
Alsint porous incinerating dishes

Alsint 99.7-tubular crucibles

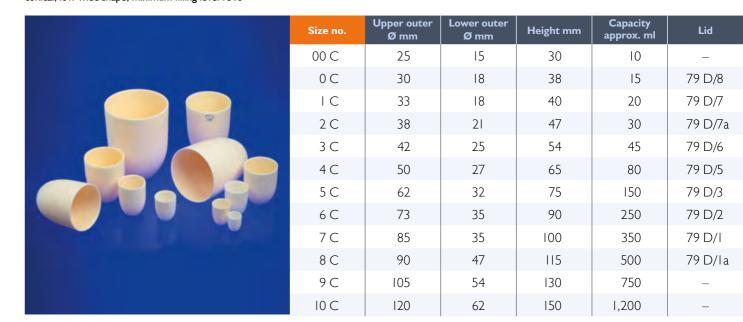
Applications


Chemical-technical applications:

- Crucibles for crystal growing
- Crucibles for fusion processes
- Crucibles for annealing


High-wear conditions:

- Ball mill pots
- Milling balls
- Mouthpieces
- Shaft-protection sleeves


Alsint 99.7-crucibles cylindrical, flat base, minimum filling level 75%

conical, tall shape, minimum filling level 75%

conical, low wide shape, minimum filling level 75%

Morgan Advanced Materials Haldenwanger

has developed from its foundation in 1865 to become one of the world's leading manufacturers of high-tech ceramics. We offer you an extensive range of products made of oxide and non-oxide materials, which are primarily used in demanding thermal, chemical or even mechanical applications. Thanks to our wealth of expertise in ceramics, we serve you not only as a supplier, but also as a reliable partner in developing solutions for your challenges.

Productos para Laboratorio

DELEGACIONES

Cataluña Norte: Cataluña Sur: Centro y Sur: Levante: Noroeste:

•

Julio Mesa Cristian Gimó Manuel Mena Charo Ortín Francisco Gutiérrez

SEDE CENTRAL

Calle Isaac Peral, 5 Pol. Ind. Camí Ral 08850 Gavà, España Tel.: +34 936-362-002 acefesa@acefesa.com

Tel.: 670-906-156 Tel.: 617-486-038 Tel.: 617-486-039 Tel.: 670-906-508 Tel.: 627-449-343

ACEFE, S.A.

@ comercial3@acefesa.com comercial6@acefesa.com comercial5@acefesa.com comercial2@acefesa.com comercial7@acefesa.com